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The Standard Model of Particle Physics

S.King, talk at Bethe Forum on 
Modular Flavor Symmetries

Left-handed 

Right-handed 

Scalar sector

Gauge boson 
sector
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The Flavor Problem

Mass hierarchies
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The Flavor Problem

Mass hierarchies Fermion mixing

almost a diagonal matrix

all mixing are large but 
the 13 element

very small neutrino 
masses
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Suggested solutions

mlight∼
mD
2

M M
R

No clue on mixing !

* Smallness of 
  neutrino masses:

  See-saw
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Suggested solutions

L∼Ψ L H ΨR ( θΛ )
n

→e(−qL+q H+qR+ n∗q θ)

mlight∼
mD
2

M M
R

* Smallness of 
  neutrino masses:

  See-saw

* Hierarchical    
   Pattern

   Froggatt-Nielsen   
   mechanism

No clue on mixing !
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Suggested solutions

* Hierarchical    
   Pattern

   Froggatt-Nielsen   
   mechanism

mlight∼
mD
2

M M
R

* Smallness of 
  neutrino masses:

  See-saw

L∼Ψ L H ΨR ( θΛ )
n

Too many O(1) coefficients

Works better for small mixing

No clue on mixing !
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Suggested solutions

* Hierarchical    
   Pattern

   Froggatt-Nielsen   
   mechanism

mlight∼
mD
2

M M
R

* Smallness of 
  neutrino masses:

  See-saw

* mixing angles

No clue on mixing !

elegant explanation:  
non-Abelian
discrete flavour symmetries 

Complicated scalar sector

L∼Ψ L H ΨR ( θΛ )
n

Too many O(1) coefficients

Works better for small mixing
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Modular Symmetry

We start from 

Γ(N )={(a b
c d )∈SL(2 , Z ) ,(a b

c d)=(1 0
0 1)(Mod N )}

Feruglio, 1706.08749

the group of 2x2 matrices with integer entries 
modulo N and determinant equals to one modulo N
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Modular Symmetry

We start from 

Γ(N )={(a b
c d )∈SL(2 , Z ) ,(a b

c d)=(1 0
0 1)(Mod N )}

G(1)=SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and 
determinant equals to one, called homogeneous modular group G

Feruglio, 1706.08749

the group of 2x2 matrices with integer entries 
modulo N and determinant equals to one modulo N
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Modular Symmetry

We start from 

Γ(N )={(a b
c d )∈SL(2 , Z ) ,(a b

c d)=(1 0
0 1)(Mod N )}

G(1)=SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and 
determinant equals to one, called homogeneous modular group G

G(N), N>=2  are infinite normal subgroups of Γ

Feruglio, 1706.08749

the group of 2x2 matrices with integer entries 
modulo N and determinant equals to one modulo N
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Modular Symmetry

We start from 

Γ(N )={(a b
c d )∈SL(2 , Z ) ,(a b

c d)=(1 0
0 1)(Mod N )}

G(1)=SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and 
determinant equals to one, called homogeneous modular group G

G(N), N>=2  are infinite normal subgroups of Γ

Feruglio, 1706.08749

the group of 2x2 matrices with integer entries 
modulo N and determinant equals to one modulo N

the group Γ(N) acts on the complex variable τ (Im τ >0)

γ τ=
a τ+b
c τ+d
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Modular Symmetry

inhomogeneous modular group (or simply Modular Group)

Important observation for N=1:  a transformation characterized by parameters 
{a, b, c, d} is identical to the one defined by {-a, -b, -c, -d}

G(1) is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = G
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Modular Symmetry

inhomogeneous modular group (or simply Modular Group)

Important observation for N=1:  a transformation characterized by parameters 
{a, b, c, d} is identical to the one defined by {-a, -b, -c, -d}

G(1) is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = G

In addition:

Γ(2)=Γ(2) /{1 ,−1} Γ(N )=Γ(N ) N>2

since 1 and -1 can be distinguished

since 1 and -1 cannot be 
distinguished
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Modular Symmetry

inhomogeneous modular group (or simply Modular Group)

Important observation for N=1:  a transformation characterized by parameters 
{a, b, c, d} is identical to the one defined by {-a, -b, -c, -d}

G(1) is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = G

In addition:

Γ(2)=Γ(2) /{1 ,−1} Γ(N )=Γ(N ) N>2

since 1 and -1 can be distinguished

since 1 and -1 cannot be 
distinguished

Finite Modular Group: ΓN=
Γ

Γ(N )
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Modular Symmetry

Generators of G
N
 : elements S and T satisfying

S=( 0 1
−1 0) , T=(1 1

0 −1)
corresponding to:

τ→
S
−
1
τ

τ→
T
τ+1

S2=1, (S T )3=1 , T N=1
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Modular Symmetry

Generators of G
N
 : elements S and T satisfying

S=( 0 1
−1 0) , T=(1 1

0 −1)
corresponding to:

τ→
S
−
1
τ

τ→
T
τ+1

S2=1, (S T )3=1 , T N=1

relevant for model building:

for N ≤ 5, the finite modular groups G
N
  are isomorphic to non-Abelian discrete groups 

Then the question is: why Modular Symmetry ? 

G
2
 ≃ S

3
       G

3
≃ A

4
       G

4
 ≃ S

4            
G

5
≃ A

5
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Modular Forms

Modular Forms:

holomorphic functions of the complex variable τ with well-defined 
transformation properties under the group G(N)

f (γ τ )=(c τ+d )2k f ( τ) , γ=(a b
c d)∈Γ(N ) 2k = weigth,  N  = level 
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Modular Forms

Modular Forms:

holomorphic functions of the complex variable τ with well-defined 
transformation properties under the group G(N)

f (γ τ )=(c τ+d )2k f ( τ) , γ=(a b
c d)∈Γ(N ) 2k = weigth,  N  = level 

            K < 0: 
no modular forms 

            K = 0: 
constant functions

            K > 0: 
          linear space of finite   
                           dimension

R. C. Gunning, Lectures on Modular 
Forms, Princeton, New Jersey USA, 
Princeton University Press 1962
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Model Building

Key points:

1. Modular forms of weight 2k and level N ≥ 2 are invariant, up to the  
    factor (cτ + d)2k under G(N) but they transform under G

N
  ! 

f i(γ τ )=(c τ+d )2 kρ(γ)ij f j( τ)

unitary representation of G
Nrepresentative element of G

N
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Model Building

Key points:

1. Modular forms of weight 2k and level N ≥ 2 are invariant, up to the  
    factor (cτ + d)2k under G(N) but they transform under G

N
  ! 

unitary representation of G
Nrepresentative element of G

N

2. in addition, one assumes that the fields of the theory c
i  
transforms non-   

    trivially under  G
N
  

χ (x )i→(c τ+d )− k iρ(γ)ij χ (x) j

not modular forms !
No restrictions on ki

f i(γ τ )=(c τ+d )2kρ(γ)ij f j( τ)
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Model Building

Building blocks:

1. Modular forms and fields: Leff ∈ f ( τ)×ϕ
(1) ...ϕ(n)
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Model Building

Building blocks:

1. Modular forms and fields: Leff ∈ f ( τ)×ϕ
(1) ...ϕ(n)

2. Invariance under modular transformation requires:

2k=Σi k i

ρf⊗ρχ1
⊗...⊗ρχn

⊃ I

Can someone give me the Modular Forms?

To start playing the game:
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Model Building

Long list from S.T. Petcov, Bethe Forum, University of Bonn, 04/05/2022
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Model Building

Constructing the Modular Forms

Crucial observation:

g( τ) → eiα (c τ+d )k g( τ)if

then
d

d τ
log [ g( τ)] → (c τ+d)2

d
d τ
log [ g( τ)]+k c (c τ+d )

this term prevents of 
having a modular form 
of weight 2 k = 2
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Model Building

Constructing the Modular Forms

Crucial observation:

if

then

this term prevents of 
having a modular form 
of weight 2 k = 2

The inhomogeneous term can be removed if 
we combine several f

i
(τ) with weights k

i

d
d τ

Σi log [g i(τ )] → (c τ+d )2
d

d τ
Σi log [gi( τ)]+ (Σi k i )c (c τ+d)

Σi k i=0with

g( τ) → eiα (c τ+d )k g( τ)

d
d τ
log [ g( τ)] → (c τ+d)2

d
d τ
log [ g( τ)]+k c (c τ+d )
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A case study: G
2 
~ S

3

Let us find the functions f(t) !

The group S3 contains 1 + 1’ + 2

two independent modular forms can fit into a doublet of S3
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A case study: G
2 
~ S

3

Let us find the functions f(t) !

Dedekind eta functions 

The group S3 contains 1 + 1’ + 2

two independent modular forms can fit into a doublet of S3

h24 is a modular form of weight 12

S: T:
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A case study: G
2 
~ S

3

Constructing the Modular Forms

the system is closed under modular 
transformation

η(2 τ)
η(τ /2)

η((τ+1)2 )

T

T

S

S
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A case study: G
2 
~ S

3

Constructing the Modular Forms

the system is closed under modular 
transformation

η(2 τ)
η(τ /2)

η((τ+1)2 )

candidate modular form

T

T

S

S

Y (α ,β , γ)=
d

d τ
[α log η(τ /2)+β logη((τ+1)/2)+ γ log η(2 τ) ]

α+β+ γ=0
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A case study: G
2 
~ S

3

Constructing the Modular Forms

Equations to be satisfied:

representation of generators
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A case study: G
2 
~ S

3

Constructing the Modular Forms

Equations to be satisfied:

Y 1(α ,β , γ)∼Y (1,1 ,−2) Y 2(α ,β , γ)∼Y (1 ,−1,0)

representation of generators

doublet of S3: Y
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A case study: G
2 
~ S

3

How to predict the Neutrino mass matrix (from the Weinberg operator, wrong path...)

For a satisfactory model, we ask:

1. small number of operators → predictability

2. no new scalar fields beside Higgs(es) → symmetry breaking dictated by  
                                                              the vev of t
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A case study: G
2 
~ S

3

For a satisfactory model, we ask:

1. small number of operators → predictability

2. no new scalar fields beside Higgs(es) → symmetry breaking dictated by  
                                                              the vev of t

S3 SU(2) ki

Lem =(e,m) 2 2 -1

Lt 1 2 -1

Hu 1 2 0

How to predict the Neutrino mass matrix (from the Weinberg operator, wrong path...)



35

A case study: G
2 
~ S

3

For a satisfactory model, we ask:

1. small number of operators → predictability

2. no new scalar fields beside Higgs(es) → symmetry breaking dictated by  
                                                              the vev of t

S3 SU(2) ki

Lem =(e,m) 2 2 -1

Lt 1 2 -1

Hu 1 2 0

L=hu
2
[a ((Leμ Le μ)2 , Y )1+b Lτ(Leμ Y )1 ]

mν=(
a Y 2 a Y 1 b Y 1/2
a Y 1 −a Y 2 b Y 2/2

b Y 1/2 b Y 2/2 0 )

How to predict the Neutrino mass matrix (from the Weinberg operator, wrong path...)

using one power of Y (modular form of lowest weight)
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A case study: G
2 
~ S

3

Mass matrix against the experimental data

mν=(
a Y 2 a Y 1 b Y 1/2
a Y 1 −a Y 2 b Y 2/2

b Y 1/2 b Y 2/2 0 )

5 observables, 2 complex parameters: a/b and t  →   very difficult task!

large c2 of O(100) mainly driven by q13

How to predict the Neutrino mass matrix (from the Weinberg operator, wrong path...)
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Conclusions

Modular symmetries offer an alternative way for model building

Yukawa couplins dictated 
by modular forms

symmetry breaking by 
the vev of tau only

unified description of 
quarks and leptons

A lot to do:

mass hierarchy

more than one 
modulus

more pheno: 
leptogenesis, 
LFV...
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Backup slides
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Kahler potential

Under G:

Tte invariance of the action requires the 
invariance of the superpotential w(Φ) and 
the invariance of the Kahler potential up 
to a Kahler transformation:

Kahler potential:

modular invariant kinetic terms
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Some definitions

a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup 

which is invariant under conjugation by members of the group of which it is a part: 

a subgroup N of the group G  is normal in G  if and only if (g n g− 1) ∈ N for all g ∈ G  and n ∈ N  

G(N), N>=2  are infinite normal subgroups of Γ, called principal congruence subgroups

the group Γ(N) acts on the complex variable τ (Im τ >0)

γ τ=
a τ+b
c τ+d

And it can be shown that the upper half-plane is mapped to itself under this action. 
The complex variable is henceforth restricted to have positive imaginary part
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Some definitions

Modular Functions and Modular Forms   
                     J. S. Milne

Fundamental domain of t on SL(2,Z): connected open subset such that no two 
points of D are equivalent under SL(2,Z)
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A case study: G
2 
~ S

3

Constructing the Modular Forms

Under T:

Under S:

Y (α ,β , γ) → Y (γ ,β ,α)

Y (α ,β , γ) → τ2 Y (γ ,α ,β)

representation of generators
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A case study: G
2 
~ S

3

q-expansion of the Modular Forms

Y 1(τ )≫Y 2(τ) for Im(t) >>1
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Weinberg operators for G
2 
~ S

3                 
   (1)

S3 SU(2) ki

Lem =(e,m) 2 2 kem

Lt 1 2 kt

Hu 1 2 0

Neutrino mass matrices from the Weinberg operator

Case a) (Le μ
2 )1⊗(Y 2)1 ,(Y 3)1 ,... ,(Y n)1 −2k eμ+2n=0 , n=2.. .

Case b) (Le μ
2 )2⊗Y ,(Y 2)2 ,(Y 3)2 ,... ,(Y n)2 −2k eμ+2n=0 , n=1. . .

Case c) (Le μ Lτ)2⊗Y ,(Y 2)2 ,(Y 3)2 , ..., (Y n)2 −k eμ−k e τ+2n=0 , n=1. . .

Case d) (Lτ)
2⊗(Y 2)1 ,(Y 3)1 ,... ,(Y n)1 −2k e τ+2n=0 , n=2. . .
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Weinberg operators for G
2 
~ S

3                 
   (2)

Neutrino mass matrices from the Weinberg operator

Case b) (Le μ
2 )2⊗Y ,(Y 2)2 ,(Y 3)2 ,... ,(Y n)2 −2k eμ+2n=0 , n=1. . .

Case c) (Le μ Lτ)2⊗Y ,(Y 2)2 ,(Y 3)2 , ..., (Y n)2 −k eμ−k e τ+2n=0 , n=1. . .

(n=1)

Solutions: [ke μ=1 k e τ=0 ] [k eμ=0 ke τ=2] [k eμ=1 ke τ=1]

mν=(
b Y 2 b Y 1 c Y 1/2
b Y 1 −b Y 2 cY 2/2

c Y 1/2 c Y 2/2 0 )
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Weinberg operators for G
2 
~ S

3                 
   (3)

Neutrino mass matrices from the Weinberg operator

(n=2)

Solutions: [ke μ=2 k e τ=2 ] [ke μ=2 k e τ≠2] [ke μ≠2 ke τ=2]

Case a) −2k eμ+4=0

Case b) −2k eμ+4=0

Case c) −k eμ−k e τ+4=0

Case d) −2k e τ+4=0

mν=(
(a+b) y1

2
+(a−b) y2

2 2b y1 y2 c y1 y2
* (a−b) y1

2
+(a+b) y 2

2 1/2c ( y1
2
− y2

2
)

* * d ( y1
2
+ y2

2
)

)
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A case study: G
2 
~ S

3

Dedekind eta functions 

Under T:

η(2 τ) → e iπ/6η(2 τ)

η(τ /2) → η((τ+1) /2)

η(( τ+1)/2) → ei π/12η( τ /2)

Under S:

η(2 τ) → √−i τ /2 η(τ /2)

η(τ /2) → √−2 i τ η(2 τ )

η((τ+1)2 ) → e−iπ /12√−i τ (√3−i )η( (τ+1)2 )
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Mod

Id[a_, b_] := {{Mod[a, b], 0}, {0, Mod[a, b]}}

Id[-1, 2] (1 0
0 1)

Id[-1, 3] (2 0
0 2)
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